Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation

In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.

متن کامل

On q–fractional derivatives of Riemann–Liouville and Caputo type

Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .

متن کامل

Positive Solutions for Nonlinear Caputo Type Fractional q-Difference Equations with Integral Boundary Conditions

Since Al-Salam [1] and Agarwal [2] introduced the fractional q-difference calculus, the theory of fractional q-difference calculus itself and nonlinear fractional q-difference equation boundary value problems have been extensively investigated by many researchers. For some recent developments on fractional q-difference calculus and boundary value problems of fractional q-difference equations, s...

متن کامل

A Krasnoselskii Existence Result For Nonlinear Delay Caputo q—Fractional Difference Equations With Applications to Lotka—Volterra Competition Model∗

In this paper, we investigate the existence of solutions for nonlinear delay Caputo q—fractional difference equations. The main result is proved by means of Krasnoselskii’s fixed point theorem. As an application, we link the conclusion of the main theorem to an existence result for Lotka—Volterra model.

متن کامل

Fractional difference inequalities of Gronwall – Bellman type

Discrete inequalities, in particular the discrete analogues of the Gronwall–Bellman inequality, have been extensively used in the analysis of finite difference equations. The aim of the present paper is to establish some fractional difference inequalities of Gronwall–Bellman type which provide explicit bounds for the solutions of fractional difference equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2019

ISSN: 1029-242X

DOI: 10.1186/s13660-019-2257-6